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Second-order streaming in a thin fluid layer driven by one or two opposed, tangentially oscillating wavy
walls is theoretically investigated. In contrast to the well-studied problem of oscillatory flow past a stationary
boundary, the present problem is subject to a nonhomogeneous second-order boundary velocity condition. A
combination of steady Reynolds stresses and boundary forcing thus drives the streaming flow; indeed, under
most conditions, boundary-forced flow dominates Reynolds-stress-driven flow. The first part of the paper
examines parametric effects on second-order flow structure. Under low-Reynolds-stress conditions and during
single-boundary forcing, flow structure remains essentially independent of all parameters, including the Stokes
layer thickness, the fluid layer thickness, and the forcing wave form. Three approximations to the full second-
order solution, valid under low-Reynolds-stress conditions, are used to explain these results. In the case of
dual-boundary forcing, no corresponding universal behaviors are observed; flow structure exhibits sensitivity
to all problem parameters. The second part of the paper investigates particle transport during quasistatic
second-order streaming. Here, slow, superposed, large-amplitude oscillations of one wall produce the time-
dependent, quasisteady flows of interest. Collective particle motion in the direction of large-scale boundary
displacement and filamentary motion in the opposite direction, features consistent with transport in traveling
waves|[E. Moses and V. Steinberg, Phys. Rev. L&®, 2030 (1988], characterize short-time transport.
Long-time or asymptotic transport, in contrast, is characterized by particle attraction or repulsion to or from
period-one elliptic points and attraction toward limit cycles on the Poincapg.

PACS numbd(is): 47.15.Gf, 47.90ta

I. INTRODUCTION cillatory flow [3-5]. Lyne [3] considered second-order

streaming in the limits where oscillation amplitudes) (are

Second-order streaming produced by oscillating solidych smaller and much larger than the wall wavelength (
boundaries, oscillatory flow over solid boundaries, or free's<1 and e>1, respectively, wheree=A/A. Vittori [5]

;u(jrfaced wave motion Elgysf an |r_nport?nt rgle g‘ Wave'adapted Lyne’q3] analysis to the case where wall protru-
induced mass transpoft,2], formation of marine bottom  gions consist of small sinusoids superposed on a larger pri-

topographieq3,4,5), heat transfef6,7], acoustic levitation mary sine wavewhere the latter was treated by LynShe
(see, e.g[8]), and mass transf¢8], and presumably plays & 315 extended Lyne’s model by obtaining solutions valid for

si%mﬂ(;mt droleRln acltc)justltc partlclr? aggilogﬁratltﬁeeg e.g._,d arbitrary values oA/X. Kaneko and Honijj4] also extended
[10)). Steady Reynolds stresses have traditionally been i eri_'yne’s analysis by considering higher-order corrections in

tified as the primary mechanism driving such flows. This,” - ~ : A e
picture holds that Reynolds stresses within near-boundary O/E’ wlherehoh_|skthe wa}II arr]r_]phtude aﬂw_ ‘/@ IS t(;l_e .
interfacial Stokes layers induce cellular flow within the tokes layer thickness. In this case, theoretical predictions
were qualitatively consistent with flow visualization data.
. i Soon after, Kanek§13] reported numerical solutions for the
!ayersoutgr edge, an outer flow_ls produced whose charact%rame problem. Earlier work by Schiicting.4], Longuet-
is Adetermlned Aby the streaming Reynolds number; ReHiggins[l], Stuar{11], and Riley[12] provided much of the
=02/&»7, whereU., is a characteristic speed, is the oscil- conceptual framework for these later studies.
lation frequency, and is the kinematic viscosity. For Re This paper develops a two-dimensional theory of steady
>1, the outer flow assumes a boundary layer structure, whilstreaming within a finite fluid layer, driven by one or two
for Re,<1, the outer flow exists as an extended Stokes flowopposing oscillatory wavy boundaries. The asymptotic
(see, e.9.[11,12). In the present problem, where we limit model is appropriate in the limit where the streaming Rey-
attention to Rg<l1, secondary flow is determined iwo  nolds number Re<l, and assumes thatle>e¢,, where
physical mechanisms: Reynolds stresses within the Stokes, (=hy/\) is the nondimensional wall amplitude. The
layer, and boundary forcing due to the no-slip boundary conwork is motivated by a desire to better understand scalar
dition at the oscillating boundary. transport across fluid gaps bounded by either regular or ran-
Earlier theories of second-order streaming near wavyjom surfaces, which in turn are subject to either regular or
walls have focused exclusively on the case where a singleandom vibration. We limit attention to periodic forcing, and
wavy boundary remains fixed relative to a semi-infinite, 0s-in the first half of the paper extend earlier wg«5,13 by
examining the effects of fluid layer thickness, Stokes layer
thickness, forcing wave form, driving frequency ratio, and
*FAX: (704) 547-2352. Electronic address: rkeanini@uncc.edu opposing wall offset on secondary flow structure. A key
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finding, applicable under low-Reynolds-stress conditions,
concerns the insensitivity of single-boundary-driven flow to

variations in the first three parameters. Three approximations
to the full second-order solution, valid under low-Reynolds-

stress conditions, are derived and used to explain these re
sults.

In the second half of the paper, we initiate study of long-
range mass transport induced by slow, superposed quasistat
oscillations of one wall. While this type of transport has been
investigated in generic Stokes flowsee, e.g.[15]), it has
not been examined in second-order Stokes flows. Here we
identify a pair of flow bifurcations, characterized by cross-
channel stagnation streamlines “jumping” two wall wave- ,
lengths along a boundary, and occurring when crests and
valleys on opposing walls pass through vertical alignment, as
the critical mechanism mediating long-range particle trans- . N .
port. We then show that short-time transport, occurring on (X,H,€,ey,0)=N""XH,Ahg,0), t=at, (1)
the slow (quasistatit oscillation time scale, is consistent
with observed transport in traveling waves and that long
time (asymptoti¢ transport is dominated by agglomeration
or repulsion to or from moving elliptic points, or by periodic,
collective rotation, also about moving elliptic points. These
observations are interpreted in nonlinear dynamical terms.

FIG. 1. The flow geometry.

whereX is the position vector. In addition, velocity and the
stream function are nondimensionalized using the wall ve-
locity amplitude,

u=(0) "%, =081y, )

where U,,=A&. Note that dimensional quantities are de-
noted with carets.
Taking the curl of the momentum equation and using the
above definitions, we obtain the equation governing vorticity
Second-order streaming within fluid layers bounded bytransport:
opposing wavy walls is characterized by a number of length )
scales. In the simplest case, which we treat here, both walls aV2— 65(¢*V ¥) =B 1v4y. 3)
have the same wavelength and amplitude and are subject to a(X,y)
tangential forcing of the same amplitude. In this instanceA it of . i i g i N
: : I - s a point of comparison with earlier worl@ is roughly
five length scgles can be |dent|f|ed. the waI_I wgvaaler?g,th equivalent to the the parametit?= e~ Re, introduced by
the wall amplitudehy, the amplltuAde of oscillatiorA, the Riley [12] while 3 is inversely proportional to the param-
characteristic Stokes layer thickneds |7/, and the mean  gterk used by Lynd[3] (V3= \8/k). Similarly, e corre-

depth of the fluid layeH. Based on these scales, four inde- sponds to the parametkR introduced by Lyne.

pendent parameters=A/\, VB=\/5, e,=hy/\, and H The time- and space-dependent heiglaf the oscillating
=HA/X arise, indicating in turn the relative magnitude of par-Poundary, obtained via a Galilean transformation between
ticle displacements, the relative penetration of unsteady vorvall-fixed and laboratory fixed coordinates, is given by
ticity into the surrounding fluid, the relative height of wall _ _ .

protrusions, and the relative widthspect ratip of the fluid y=h(x.t) =€y cogk[x=eF(D]}, @
layer. By comparison, second-order streaming within semiyherek=27 is the dimensionless wave number for the wall

infinit_e fluid domains bounded by a single.wavy wall is Char'andF(t) is the time-dependent tangential boundary displace-
acterized by four length scales and three independent paraffient. In the following, we expreds(t) as

eters[3-5], while steady streaming about compact cylinders

IIl. PROBLEM FORMULATION: SINGLE
OSCILLATING BOUNDARY

and spheres in infinite domains is described by three length . a,
scales and two independent parameféfis12]. F(t)=>, FSinnt. (5)
We initially develop the solution for steady second-order n=1

flow produced by a single oscillating boundary and then ex- ) o en

tend this result to the case where both boundaries oscillatd € Velocity of the lower boundaryg="F'(t)i, is purely
Thus, consider two-dimensional flow within a finite fluid Norizontal and leads to the following conditions ¢n
layer driven by an oscillating wavy wall, as shown in Fig. 1. ey _ _

For simplicity, we assume that both walls have the same dyp=F', 0xp=0, y=h0xD). ©)

wavelength and wave amplituda, and hy. It should be  Similar conditions, withF’(t) replaced by zero ang by H
noted, however, that the formulation can be modified to—y, are imposed on the upper surface.

handle the more general case where each wall has a unique We assume thatste> ¢, and expandy in € and ¢,, as
wavelength and amplitude. All lengths are nondimensionalfg|lows:

ized using the wall wavelength, while time is nondimension-

alized Usinga): l/l: l//oo+ El//’lo+ 6W1/101+ 62 lllzo'f‘ E€W¢ll+ e (7)



6608 RUSSELL G. KEANINI PRE 61

This expansion differs from those used[®,5], where the *

stream function was expanded &), and steady streaming Ugo= E [A,expv,y+int)+B,exp —v,y+int)
was obtained as af(e€) correction to theO(e,) solution. n=1

Thus, the earlier solutions apply whee-k,> €. Transfer- + A% exp 5y —int)+BE exp(— vy —int)].

ring the boundary conditions in E¢6) to y=0 and similar nY nY

conditions on the upper boundary yo=H, we obtain the (19

following hierarchy of problems @(€'e)): ~
g yore (€en) Here complex conjugates are starr§gs /By, H=/BH,

, 1, v,=+/n/2(1+i), and
A 'J/|J+S|J:EV s )
B a,/2 5 (a/2)exp(2v,H)
dyhy=F5(t), y=0, ©) " l—eXF(ZVnH), " 1—exp2v,H) .
Ixihy=0, y=0, (10t is readily shown that whenug=F’(t)=cosf) and Fi
J 0 H (11) —oo, this solution simplifies to Stokes’ classical solution for
y$u=0, y=H, flow in a semi-infinite region, driven by a flat, sinusoidally
oscillating plate.
(9)(1//”:0, y:H (12) g p

Here,S,; is a vorticity source term a@D(e',¢,) andF,; is a B. O(e,,) solution

corresponding horizontal boundary velocity. It is readily TheO(e,) solution satisfying Eqs(8)—(12) is given by
shown thatSyy= Sy1= S19= S;0= 0. At O(€e,,), however, the
source term assumes the form - _ ) s .
Yor=c0oskx) 2, [xn(Y)eXH(int) + xo* (V) exp ~int)],
S11= — K- VX (Ugo: VUgs+Ugs- VUgg), (13 (20)

where for convenienc8,; is expressed in terms of th@(1) where
and O(e,,) velocity fields, uy, and ug,, respectively. The

boundary velocities at each order are given by xn(V) =AM exp w,y) + AN exp(qy) + AL exp( — w,y)
- +A{ exp(—qy), (21)
Foo=F'(t)= >, a,cosnt, (14)
n=1

and where the coefficiena{”, AV, A", and A" are
Fo 1 given in the Appendix.
10=0, (15 Again, it can be shown that in the case whd¥&(t)

=cost) and H—, the solution in Eq.(20) simplifies to

For=~cogkx) dyytfoo, (16) Lyne’s [3] O(e,,) solution.
F20=0, (17 _ _ . .
C. O(ee,) solution: steady streaming due to arbitrary forcing
F11= —kF(t)sin(kx) dyyoo- (18 We first decompose,, into steady and unsteady parts:
As seen above, th®(e) andO(e?) problems are homo- Pu=y3+ vy, (22)

geneous so that,,=const andy,,=const. Note too that
transferring boundary conditions to the plane surface® where
andy=H allows a simpler formulation than the conformal 104 (9
transformation approach used by Lyfi8]. Transferring B~V 7= —K- VX (Ugo VUgr+ Uos- VUgo)|steady
boundary conditions in, e.g., Eq®) from y=h(x,t) (23
=€, cogKx—eF(t)]} to y=0 is carried out by Taylor ex- _
panding derivatives ofy abouty=0 and by expanding the APl =—T100dyyPodsteany  Ix#17=0, y=0,
function h(x,t) for small e Thus, for example, ©_ ©
aAp(x,nt) = dyp(x,01) + dy,th(X,01)[ €, COSKX)+ €,ekF dyyn1=0, d17=0, y=H,
sinkX)]+O(€%,). Inserting Eq.(7) into this expression then
leads directly to the conditions in Eqd.4)—(18). and
200 p-1g4 (O_ | )
A. O(1) solution: generalized Stokes solution KV P11 BV 1=KV X (Uoo Vlor

The O(1) solution to Egs(8)—(12) describes flow pro- +u01'vu00)|unsteady (24)
duced by a flat plate, driven by a cyclic tangential velocity O_
F’(t). To simplify derivation of higher-order solutions, we dy 91(X)ayy¢00|unsteady Ix 11 =0, y=0,

state theO(1) solution in terms of the velocity component O_ ©_
(where they component is zefpo dythy1= dxip11=0, y=H,
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and whereg (x) = k sin()F(t). to flow produced by the upper boundarwith {3, w
Since we are interested only in the steady soluiid#l,  obtain the overall solution:
and since this problem is subject to two nonhomogeneities,
we obtain the solution by superposing two subproblems, oS =S+ g5y, 27
each subject to a single nonhomogeneous term:
W= g4 2 (25) Where 30 =yl9 [from Eq. (26)]. Letting y=a"&' and
HeT L noting that the |nde>n 1, ¢S5 is obtained from the solu-
where tion in Eq. (26) by introducing the following substitutions
into the coefficienta{™-af", b{"-b{”, ¢V, DM, Ky,
B IVAYLT = — K- V X (Ugg VUgs+ g VUgo)| steady andM; in Eq.(26): (i) replacer; with \/Jvl, (i) replace
a, with yaq; (iii) replaceg with yB; (iv) replacew; with
V4¢(121)=0, V% y+iv; (v) replaceq with g/+/y; (vi) premultiply any

term containingn by y [excepting those already mentioned

dyy =0 in (i)—(v)]; (vii) replacey with H—¥; and (viii) replacex

, y=0,
dyP7 = —T1(X) dyyho seay with 1—x. Note thatv; = /1(1+1i) and that the magnitudes
W_ g 4D 0, of B andq=2#//8 are determined by', the frequency of
Ix1 = Oxibiz y= the lower boundary. Also note that when crests and valleys
L5 42— _ on upper and lower walls are not vertically aligneds re-
dyrr =y =0, y=H, placed by
I W7 =0T =0, y=H. X' =1+ ¢—x, (28)

Physically, zp(lll) is the second-order flow component pro-

duced by steady Reynolds stresses Wm@ is the compo-

nent driven by the nonhomogeneous boundary velocity.
The final solution is given by

where ¢ is the horizontal distance between any given crest
on the lower wall and the nearest crest lying to the right on
the upper wall. We will refer tap as thewall offset

* - - IV. APPROXIMATE SECOND-ORDER SOLUTIONS

S=sinkx) X, 1 (a"+bi")e” Y+ (ay"+byV)ye ¥ , o , o
n=1 This section briefly des(cglbes three approximations to the
n M v n M % full second-order solutions}y in Eq. (26), valid in the limit
+(a(3 )+b(3 ))eqy+(a5‘ )+b5‘ ))yeqy where Reynolds-stress-dr?&en flow is negligible. Using su-
4 perposition and the substitutions given in the last section, all
+2 [c](m exp(an7)+D}”) expM;,.9)]{ +c.c., three approximations are adapted to handle dual-boundary
i=1 forcing (see below. The approximate ranges of validity are
(26)  hoted in each case.

where the coefficients, ai”—a{”, b{"-b{", Cj(n)' Dj(n)' A. Zero-Reynolds-stress approximation
Kjn, andMj, are given in the Appendix. It is important to o
note that the problem associated with an oscillating boundary AS noted, the second-order solution in Eflﬁ) represgnts
is not equivalent to the problem associated with an oscillatthe superposmon of two flow components? and y4?,
ing fluid over a stationary boundary. The difference arises awherey?, given by

O(ee,), where the nonhomogeneous boundary condition in

Eq. (23) does not appear in the latter case. m—sm(kx)E [ag.n)e—q'y_i_ a(znyye_q*er a(gmeqy

Ill. STEADY STREAMING PRODUCED 4
BY TWO OSCILLATING WAVY BOUNDARIES +a(n)~e Wy 2 [C(”)exp(K,ny)

We consider the simplest case where upper and lower
boundaries are driven at single frequencigsand &', re-
spectively, and require thab'/&"=P where P=2,3,4,... . +D{" equjn“y)]] +c.c., (29)
This condition allows us to construct a steady second-order
solution by superposing the steady solution for single-
frequency forcing at a single boundary. In particular, at anyS the component produced by steady Reynolds stresses and
instant and over periodl = 27/ &,, [Where®,= min(@",»)] Y7, given by
the cross-termsuy Vup,, Uy Vul;, Ul Vuy,, and
Uy Vugoin Sy; and the term& U(t) o, andF' (t) oy, in
the tangential velocity boundary conditions have zero steady
components. Thus, superposing a modified versioqa(@fin
Eq. (26), which we denote ag{S" (and which corresponds +b{Mye~ M) +c.c., (30)

sm(kx)Z (b{Me~ D+ bMye~ 9+ hiMedy
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is the component produced by the nonzero second-order véafinite domain approximatioSID); as with the SRS ap-
locity on the oscillating boundary. It is found that over proximation, the SID approximation can be used fdr
10 ?2<B=<10° andH=0.2, 43 is well approximated by the =0.7 and 102<B=<10°.
second component alone, i.e.,

(9~ g2 yZRS. @1 V. RESULTS AND DISCUSSION

H We will first focus on flows produced by single-boundary

; ; } ) o arinp fOrcing, briefly examining the effects of gap heigbtand
\(AZ/(FEQSV)V.IH term this thezero-Reynolds-stress approximation Stokes layer thicknes@s embodied i on second-order
flow structure. As a prelude to future studies focused on
S o scalar transport, we will also consider the effect of driving
B. Simplified zero-Reynolds-stress approximation wave form on second-order flow, examining the flow’s re-
Examining individual terms in/{?, we find forH=0.7  Sponse to sinusoidal, sawtooth, and square-wave forcing. We
and 10 2<B8=<10° thatb(1“)<1, b(3”)<l, andbf{”«l, while t_hen_turn to flows produced by dual-boundary_ forcing, inves-
b(zn)—>iaﬁvnk/4n. Thus, over this range df and, the ZRS tigating the effects oH, B, the frequency ratioy, and the
approximation can be simplified to yield upper boundary offseth on second-order ﬂqw structure.
Where appropriate, we compare the approximate solutions
o described above with the full second-order asymptotic solu-
P9~ g SR9=sin(kx) > (b +biV* )y exp —qy). tion in Eq. (26). Finally, in the next section, we examine
n=1 particle transport associated with superposed, quasistatic
(32 boundary oscillations.
Prior to discussing the results, we note that the flow be-
Considering briefly the accuracy of this approximation, wenyeen two opposing wall wavelengtiipossibly offset by
observe that ap3=1 and over 0.#H<2, the maximum distance¢) can be mapped to a tord&. Poincarés index
relative error E between ¢37° and ¢{J (evaluated at theorem[16], relating the number hyperbolisaddie (N,),
100X 100 equally spaced points overs&=1, O<y<H, elliptic (centey (Ng), and parabolic ) critical (stagna-
and at incrementd H=0.25), does not exceed 1.6%. Similar tion) points on the torus, is thus given Bye—N,—N,/2
accuracy is generally observed+0.01, 0.1, 10, 100, and =0. All steady second-order flows, regardless of the magni-
1000, and over the same range fdf It should be noted, tudes ofg, H, ¢, andy are found to satisfy this relationship.
however, that at certain values gfandH, E can be as high
as 220%; visual comparisons of associated streamline pat-
terns suggest that the overall agreement betw,fééﬁs and
43 is nevertheless satisfactory. We will refer to this as the

simplified zero-Reynolds-stress approximatisiR9. As demonstrated in the next section, studying flow struc-
ture (i.e., the distribution of critical points and the arrange-
ment of interconnecting separatrix streamlinead investi-
gating changes to this structure due to changing flow
A third approximation to‘//(lsl)1 strictly valid when the parameters provide an essential bridge to understanding flow
fluid layer extends an infinite distance above a single osciland transport phenomena in low-Reynolds-number flow. In

lating boundary, can be obtained by replacing the boundar{he case of single-boundary forcing, second-order flow struc-

A. Parametric effects on second-order flow structure:
single-boundary forcing

C. Semi-infinite domain approximation

conditions in Eqs(11) and(12) with ture is determined by three parametétis,3, and ¢. Here,
we limit attention to the case where the offgebetween the
hy—0, y— (33 upper and lower boundaries is zero. The bifurcation diagram

in Fig. 2, obtained for zero offset, shows that over most of
for 1,J=0,1, or, equivalently, by allowingl — in Eq. (26). the computationally accessible parameter space, the second-
In either case, the steady second-order solution is given byorder flow is characterized by two counter-rotating cells.
Four-cell flows, by contrast, while appearing over a rela-
Bk = [ g2 tively wide range ofH, are limited to a small range g8.
P~ S0 = —sin(kx) —ye > (_“) (34)  [Note that round-off erro(64-bit precision becomes signifi-
J8 A=1\ Vn cant forH=5.5 andH=0.01. Thus, calculated results de-
scribed below are limited to 0.6dH=<5.5]

(where, for later use, the identityy=qy has been used As a point of reference, we note that four-cell flows are
The accuracy of this approximation is comparable to that ofharacterized by three hyperbolic poirfiger wall wave-
the SRS approximation. For example, while the maximumength, located at the intersection of separatrix streamlines
relative error a3=1 andH=0.7 is relatively high, approxi- Separating each cell, six parabolic poirier wall wave-
mately 70%, the approximation improves dramatically with!ength, located at the corners and midpoints of the upper and
increasing gap heightl; E decreases from 19% aB(H) lower boundaries, and four elliptic points, located at the
ally observed at3=0.01, 0.1, 10, 100, and 1000. Again, Shown (#=0), three vertical separatrices connect opposing
visual comparisons suggest that the approximation is reasoR&irs of parabolic points, with separation occurring aty§

able even wheiE is large. We will refer to this as theemi-  =(0,0), (3,H), and(1, 0), and reattachment occurring at the
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FIG. 2. Bifurcation diagram for flow driven by a single bound-
ary. Wall offset¢p=0.

other three points. In slight contrast, two-cell flows contain 100
no hyperbolic points, six parabolic poingall located at the

same points on the upper and lower boundariaad two ~.

elliptic points.(Note that hyperbolic points are unresolved in N o(d)
Fig. 3. Also note that the indices for corner parabolic points - g

are effectively equal td. This reflects the fact that in map- )

ping the flow to a torus, the boundary et N maps to the 93 1 2% 107°

boundary atx=N+1. See Ref[15] for further discussion
and for a description of critical points in two-dimensional  FIG. 3. Typical four-cell flows, single-boundary forcing. Plots
flows.) (b) and (d) show stream function components &r=0.25: i3
The first significant finding is that four-cell flow does not solid line; {7, dash-dotted liney{?, dashed line=10"°in (a)
have the same physical origin as four-cell flow observed irnd(b) and 5<10"° in (c) and(d). H=0.2 in all four plots. Note
the low-e limit treated by Lynd 3]. In the latter cas¢and in that in the streamline plot®) and(c) the direction of fluid flow is
the high-Re limit), four-cell patterns are produced by non- clockwisg in left, Iower.pri.mary cells and counterglockwise in right,
negligible velocities at the edge of thin Stokes layers. Herelower primary cells. Similar flow patterns hold in all subsequent

. lots. For convenience in plotting, the abscissas and ordinates on
the origin of four-cell patterns becomes apparent witgn, P :
) 9 (s) P PP V’@f‘. most streamline plots have been rescaled by factors of 100 and
Y37, and ;7 are plotted across the channel g 0.25;

. . 1) 100H, respectively.
refer to Fig. 3. Sincey;,’ corresponds to the flow component

produced by steady Reynolds stresses wii{fg is the com- (34, respectively, to explain this result. Using the SRS ap-
ponent produced by boundary forcing, then it is clear thaproximation, we see that, since the vertical velocity compo-
four-cell flow appears when both components are of companent equals zero or=; andx=$, elliptic points appear at
rable magnitude. In contrast, a similar c_omparls(am)t points on these lines Whe@¢5?~3y¢g§Rs):o, ie.,

shown demonstrates that two-cell flow exists wheiy?

> iV [In cases where the offset between the upper and

(SR _ i (n) (M*ya—kyrq _ =
lower boundaries is zero,y{$ has the form {3 dyfii Sm(kXO)nzl(bz The e P(1-ky) =0,

=sinkx)G(y). Thus, plots like those in Figs.(l8 and 3d) (35)
provide a complete description of the second-order flow
structure] wherex,= 1 or 3. Thus, approximate center locations appear

The next important set of findings, applicable under low-at
Reynolds-stress conditions, concerns the insensitivity of
second-order flow structure to fluid layer thickness, Stokes :k*l:i (36)
layer thickness, and forcing wave form. The first two results Ye '
are discussed in this subsection, and the last, which also
holds when Reynolds stresses are non-negligible, is deFhe same result follows using the SID approximation, Eq.
scribed in the next subsection. Figure 4 summarizes the firg84).
result, showing that oveld=0.7, the relative vertical posi- The second result is summarized in Fig. 5 where it is
tion of elliptic points §/./H) satisfiesy,/H=1/(2wH). We  shown that over a fairly large portion of the parameter space,
can use either the SRS or SID approximations, B@) or 10 2<g and 0.2sH=5.5, second-order flow structure is
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Elliptic Pt. Relative Position
© o o - =
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FIG. 4. Flow structure during single-boundary forcing under
low-Reynolds-stress conditiong/{?)> y{})—effect of fluid layer
thicknessH. Comparison plots show relative elliptic point locations
(yc/H) predicted by 4{9(+++) and 4379 (or equivalently
HSD) (OOO0). Here,x=0.25, $=0, andB=1.

also independent of the Stokes layer thicknggsesults for
H>3.5 andB>1 are not shown This result is explained by
noting that, over this range of parametet§; is again well
approximated by Eq(31). Inspection ofb{"—b{" then
shows thab{"” andb{” are proportional tg8 while b{" and
b{" are proportional tg3Y2. Thus, since a factog multi-
plies all terms iny{?, the condition defining the vertical
position of elliptic points,angsf%ayngzl):O (onx=1% and
2) is independent of3. This feature is also consistent with
the SRS and SID approximations, E¢32) and(34), respec-
tively, which also show thaty{S%® and {3 are propor-
tional to .
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FIG. 6. Effect of forcing wave form on flow structure. Relative

elliptic point positions shown along=0.25 with =1 and¢=0.

Single-boundary forcing.

Representative comparisons of the S@8 equivalently,
the SID and ZRS approximations with the full second-order
solution (26) are shown in Figs. 4 and 5, respectively. All
three approximations provide comparable accuracy under the
conditions shown. Note that in the case of single-boundary-
driven flow none of these approximations predicts four-cell
flow, since, as mentioned, four-cell flow reflects a balance
between the Reynolds stress flow compon$ﬁf and the
boundary-forced component{?). (See below for full flow
field comparisons during dual-boundary forcing.

B. Effect of forcing wave form

Here we investigate the effect of boundary-forcing wave
form on the structure of the second- order flow. While our
methods are based on those describefl$17, it appears
that the effect of forcing wave form asecond-ordeiStokes
flow has not been considered. For single-boundary forcing,
the leading order boundary velocity can be written as

Ugo= €aF"a(t) (37)

whereF’ ,(t) represents a boundary velocity wave form and
€, is a normalizing parameter designed to isolate wave form
effects. Following Swansofl7] and Jana, Metcalfe, and Ot-
tino [15], we investigate the effect of sinusoidal, sawtooth,
and square-wave forcing using two of the three methods they
describe: (i) choose eacle, so that all three wave forms
have equal average deviation from the mean boundary veloc-
ity (which is zero in the present casand (ii) choosee, so
that the leading term in the Fourier expansion of each wave
form is identical. Se¢15] for further details.

Examining flows over a wide range bf and g, including

FIG. 5. Flow structure during single-boundary forcing under regimes where Reynolds stresses are non-negligible, we find

low-Reynolds-stress conditionsy{2)> y{Y)—effect of Stokes
layer thicknessB. Comparison plots show relative elliptic point
locations §/./H) predicted byy{ and 4{3%9 . Here,x=0.25 and

$=0.

that the forcing wave form has no observable effect on
steady streaming patterns. Figure 6 shows a representative
result in the case where Reynolds stresses are sngall (
=1). This finding is consistent with theoretical and experi-
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. ' 2 2
e} o) 5y¢(121)|c al|C 7 ay‘//(li) sq al|Sq '
0.08¢ x X
where the subscripts at, and sq refer, respectively, to saw-
tooth, sine, and square-wave forcing.
0.06 I + +
x
g C. Parametric effects on second-order flow:
> 0.04 dual-boundary forcing
' We arbitrarily define a reference flow as that correspond-
ing to H=1.0, y=2.0, $=0.0, andB=1.0. Note that the
0.02} (_: gaWtoom upper and lower boundaries are driven by single frequencies,
quare v, and y,, respectively, wherey,/y,=v. Also note that
x Sine ; ' vl :
when ¢=0 wave crests on opposing walls are vertically
0 3 . aligned, while at¢=0.5, crests on one wall are vertically
10 15 aligned with valleys on the other.
Layer Thickness H In general, flows forced by both boundaries are sensitive
to all flow parameters. Here, we briefly describe structural
FIG. 7. Effect of forcing wave form on maximum value 9§ . changes associated with variations in wall offgetdriving
Single-boundary forcing witi8B=1 and¢=0. frequency ratioy, and fluid layer thicknesh.
mental observations of complex non-second-order Stokes 1. Variations in wall offset

flows within driven circular and rectangular cavitigs5s], Comparing representative flow sequences under condi-

and is also consistent with Swansoifs7] computational  yjons where the Reynolds stress flow component is negligible

study of eccentric cylinder flow. While Jana, Metcalfe, and,ny non-negligibleFig. 8), we see that significant Reynolds
Ottino [15] provide a semiqualitative explanation for this tresses = 10"5) produce large central cellsne per wall

result, here, ir.1 cases where Reynolds stressels are negligibje, ¢ wavelength When the Reynolds stress component is
we can pinpoint the exact cause. Whef'>y{7, we can gy (8=1), by contrast, no such cells appear and the flow
approximatey$? as y4? and thus expresg{? in the form  is dominated by boundary-forced cells near each wall. Fol-
. lowing [15], we refer to central cells not contacting either
boundary asecondarycells and cells in direct contact with a
ﬁ)wsm(kx)nzl {all i (H g () + 2 (H)gP () + boundarz aprimary cgl:Is. Although not shown, we note that
pairs of flowsF, andF_ ,, corresponding to equal right and
X(H)g®¥(y)+ P (H)gP (y) 1), (38 left offsets ¢ and —¢ aboutp=0 (or about$=0.50, are
reflectionally symmetrid 18] about the y axis to théime-
where a2f (M= (b(V+bM*), a2f@=(bP+b®*), a2  reversedflows F~j and F,*, respectively(where F ' is
=(b®+b{P*),  a2fW= (" +pH*)  gM=exp(-ky) obtained fromF, by multiplying both velocity components

= /By expky), and where,, is thenth Fourier coefficient in o o
the expansion foF'(t). It is readily shown that("—f(*) do 2. Driving-frequency variations
not depend ora,. Thus, since the functiont—f{* and As the ratio of driving frequenciey increases, the flow

(L_g are identical for each wave form, and since theinduced by the higher-frequency boundary begins to domi-
coefficientsa, are multiplied by constant normalization fac- nate that produced by the lower-frequency boundary; refer to
tors, it is clear that over the range bf and 8 where 4{2  Fig. 9. Two observatllons provide insight into this njtumvely.
>¢,//(111), all three wave forms, normalized using either nor- reaspnable result. 'Flrst, the.second—order tangential velocity
malization method, will produce essentially identical second2t €ither boundary is proportional to the rate of work done by
order flow patterns. _boundary dlsplaf:ements against leading prder viscous ;hear,

While flow structure is independent of wave form, the'-e-"?y‘//_llz_ks'n(kX)F(t)_dszl'/’OO (aty=0). Since this term is
magnitudes of the streaming velocities induced by each waveroportional toy (at the higher-frequency boundayshen so
form do exhibit slight differences. See Fig. 7 for a represeniS the associated energy input. Second, since the boundary-
tative result. In particular, it is found that the characteristicforced stream function componepf? is proportional toy*?
horizontal velocity between the lowest-lying elliptic points and sincey{?)> Y in the flows depicted in Fig. 9, then the
and the forced boundary is highest during sawtooth forcingnagnitude of the stream function associated with the high-
and lowest during square-wave forcing. This result can bdrequency boundary also varies ad?. A similar result is
explained, again under typical low-Reynolds-stress condialso observed wheg is small, i.e., when Reynolds stresses
tions, using Eq(38). Since horizonta{and vertical velocity ~ are significant(result not shown More generally, flows
components produced by each wave form are proportional tdriven by both boundaries assume the character of single-
the square of the respective Fourier coefficiemis then by  boundary-driven flows whe=5. Finally, note from Fig. 9
comparing dominant first terms we see that that a flow Fx having y=K is reflectionally symmetric
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FIG. 8. Effect of Reynolds
stresses on dual-boundary-driven
flow structure. =1 (Reynolds
stresses negligiblein the six up-
permost plots while B=10"°
(Reynolds stresses non-negligible
in the lower six plots. y=2 in
all plots. Flow patterns shown in

.,»?%@(.@g@« (T Fig;. 8—lQ spe_in the channel in the
=< = ST - ,:f—ﬁ vertical direction and span one
H=1 ) wall wavelength in the horizontal
\ direction. Horizontal and vertical
=y dimensionless length units are
20 40 60 80 100 scaled by factors of 100 and
100H, respectively.
=05

20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

(about the x axisto the flowFy, wherey=1/K (and where ~boundary. For 10'<H=1 and moderat¢s, the Reynolds

H, ¢, and g are equal stress component is again negligible and height reductions
either eliminate lower primary cellevhen ¢+ 0), or in the
3. Channel height variations case=0, squeeze them toward the lower boundésge,

e.g., Fig. 8. A similar effect is observed when Reynolds-
tress-driven flow is significani3=10""°). In this case, de-
ﬁending on the offset, lower primary cells are squeezed or

As shown in Fig. 10, forH=1, two pairs of isolated,
apparently noninteracting primary cells appear near eac

100 RS—— - — -2y
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FIG. 9. Effect of frequency ratioy during dual-boundary FIG. 10. Effect of fluid layer thicknesd during dual-boundary
forcing—low-Reynolds-stress conditions. Comparison plots showforcing—low-Reynolds-stress conditions. Comparison plots show
¢ (solid line and semi-infinite domain approximatiop3"™  ¢{ (solid line and semi-infinite domain approximatiog3"™
(dashed ling Here,H=1.0,8=1.0, $»=0, andy has the following  (dashed ling Herep=0.0, 3=1.0, y=2, andH has the following
values: (a) 5; (b) 2; (¢ %; (d) % See caption to Fig. 8 for expla- values: (a) 5; (b) 3.66;(c) 2.33;(d) 1. See caption to Fig. 8 for
nation of horizontal and vertical length units. explanation of horizontal and vertical length units.
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eliminated by central Reynolds-stress-drivésecondary  central cells and the upper boundary; each of these occupies

cells (again, see Fig.)8 about 20% of the channel width and will be similarly de-
noted as LBN), MB(N), and REN). Likewise, lower
VI. QUASISTATIC FORCING AND LONG-RANGE boundary cells are located between central cells and the
PARTICLE TRANSPORT lower boundary and will be denoted as LRI, MBI(N),
and RBIN).

In this final section, we examine qualitative features of
particle transport produced by large-scale quasistatic oscilla-
tion of either wall, where the sloviquasistati¢ oscillation is
superposed on the rapid oscillations driving steady streaming We define long-range particle transport as transport oc-
flow. A number of studies have examined particle transporturring over more than one wall wavelength. Although nu-
associated with unsteadynonsecondary Stokes flows merous computational experiments have been performed, we
[17,19-22, capillary waved 23,24, traveling waveg25—  focus on representative results obtained under one set of con-
27], Rossby waves and irrotational flof&8], and water ditions: B=10"° H=1, y=2. The short-time and
waves[1]. However, it appears that no work has been re-asymptotic transport characteristics described below are ob-
ported on transport within secondary Stokes flows. served for 10°<B=<104, 0.3sH=<2, and;<y=<4.

Although beyond the scope of the present paper, quanti- Importantly, we find that long-range transport is possible
tative descriptions of particle transport are possible, e.g., uanly under the following conditions: (1) the Reynolds-
ing the transport theory developed by Wiggins and co-stress-induced flow component must be comparable to or
workers (see, e.g.[29]). Since hyperbolic points clearly much larger than the boundary-forced component, &d
oscillate with the quasistatic motion of the upper boundarythe pair of bifurcations depicted in Fig. 11 must occur. Re-
manifolds of corresponding fixed points intersect an infiniteferring to Fig. 11, we see that the flow undergoes two bifur-
number of times to form lobes; cycle-to-cycle transport be-cations as the wall offset passes througk 0.5. When¢
tween adjacent cells is comprised of the contents of these 0.49, stagnation streamlines connecting parabolic points
lobes[29]. We also note that Ryrig30] investigated trans- on opposing boundaries form a right-running stair-step pat-
port in spatially periodic, time-modulated flows and appliedtern(from bottom to top across the channel. We will refer to
the approach described by Rom-Kedar, Leonard, and Wigthese as cross-channel stagnation stream{GESL’s). No-

A. Bifurcations leading to long-range transport

gins[31] to quantitate the transport. tice that limited flow can occur between each trio of cells
Here, quasistatic oscillations are produced by slowlyencompassed by adjacent CCSL’s. Note too that connected
varying the wall offsetp: pairs of parabolic points are essentially one wall wavelength
) out of phase. Whenp=0.50, the unresolved hyperbolic
d()=Lo+Lsin(et), (39 points in Fig. 11a) shift slightly rightward to &,y)

=(0.5,0.8) and X,y)=(0.5~0.17), and all intercellular
flow ceases. Finally, whe#p=0.51, cross-channel stagnation
streamlines form deft-running stair-step pattern between
lower and upper parabolic points, and flow can again take
. " : . e ““>'place between enclosed trios of cells. Again, pairs of con-
static _condmons prevail when the viscous d|_ffus_|on “”?e ected parabolic points are essentially one wavelength out of
scale is mugh sr)orter than theAIarge—scaIe oscillation perio hase. Taken together, we see that this pair of bifurcations
ie., when \?/iT;<1, where Tg=2m/a. Equivalently, results in stagnation streamlines “hopping” two wave-
based on definitions given earlier, quasistatic conditions eXiSlbngths along a boundary, effectively closing one cross-
if e<<2wB~*. This condition is well satisfied here sineg  channel flow path while opening another. Indeed, this bifur-

=1x10"° while =10"°. Particle paths are calculated by cation pair constitutes the key mechanism underlying long-
integrating the following system via a fourth-order Runge-range transport.

Kutta scheme:

where L is the center of oscillatioimeasured relative to
x=0), L, is the oscillation amplitudeg;= @/ ®; is the di-
mensionless oscillation frequency, aad and @; are the
dimensional slow and fast oscillation frequencies. Quasi

X=oyni(X.Y,2), Y= —dyhi(x.y,2) where z=¢. B. Short-time transport
(40 We arbitrarily define early- or short-time transport as
i ) o ) transport occurring overQt<<750At, or transport occurring
Initially, an array of 1024 partu_:l_es is dlstr|bute(_j un_lformly over approximately one slow oscillation period. Under most
over 0=x=1, 0<y<H; the position of each particle is then conditions, the uniform array of particles immediately breaks
determined at 5000 equal time incremedts, where At 5 into two large, centrally located particle clouds and at
=1.818x10° and where one quasistatic oscillation periodleast two smaller clouds near the upper boundary. As indi-
equals 55AQt. cated in Figs. 1@&) and 1Zc), breakup occurs along separa-
Flow patterns and particle positions shown correspond tarix streamlines between neighboring cellNote that quasi-
those extant over one or more wall wavelengtidote that, static boundary motion is left to right in Fig. 2Due to the
over theNth wavelength on the lower boundam=x<N bifurcations at¢=0.5, particles in central cells gradually
+1.) Hereafter, the leftmost and rightmost centfs&cond- leak into neighboring lower boundary cells and then undergo
ary) cells in wavelengttN will be referred to as L) and  filamentary transport on the periphery of adjacent central
RC(N), respectively; when portions of three central cells arecells.
present, the middle cell will be referred to as Mg( Upper Filamentary motion is mediated by two mechanisms.
boundary cellsare smaller primary cells located between First, the bifurcations a$p=0.5 effectively switch one set of
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FIG. 11. Flow bifurcations as wall offset passes through =0-85,L0=0.5875, and.=0.6. Elapsed times equal 40 in (a)
=0.5. Cross-channel stagnation streamlines are shown @ith and(b)and 495@t in (b) and(d). y=4 in (a),(b) and 3 in(c),(d).
=105 H=0.85, andy=2. ¢ has the following values: (a) Horizontal and vertical dimensionless length units are scaled by
0.49; (b) 0.50; (c) 0.51. Notice that ath=0.49 mass transport can factors of 100 and 108, respectively.
occur between the lower primary cell on the left, the central cell on
the right, and, to a lesser extent, the upper primary cell located téion. Using Eqs(28) and(39) and noting thak;t<<1 during
the right of the right central cell. All intercellular transport paths areinitial LTR (or RTL) boundary motion, we can readily ex-
closed ath=0.5, but reopen ap=0.51 as shown ific). Horizontal  press the stream function associated with upper-boundary
and vertical dlmen_slonless length units are scaled by factors of 10fhotion in traveling wave formg4,= sin(kx—wt— ¢,)F(y),
and 1004, respectively. where w=L.¢e, and ¢,=1+L,, and whereF(y) follows

from the solution fory{3” . Thus, as is intuitively obvious,
CCSL's with another, closing the path between DNB(  rightward (or leftward quasistatic boundary motion intro-
MC(N), and RBINN) and opening a path between RB( duces a traveling wave mode into the second-order flow.
MC(N), and LBI(N). Second, after traveling around the pe-  Minimal transport occurs between central cells and upper
riphery of a given central cell, particles accumulate in low-primary cells during the early period. Particles initially lo-
speed, lower primary cells and in the relatively slow-movingcated in upper primary cells experience intense mixing and
lower reaches of central cells. The accumulated particlesapid agglomeration toward each cell's instantaneous elliptic
then appear to serve as secondary particle sources for thint. Particles within central cells, by contrast, remain rela-
extending filament[Note, just as left-to-righfLTR) quasi- tively undisturbed and confined to the central region through
static boundary motion induces leftward filamentary particlet~750At. Inspection of streamline patterns similar to those
transport, right-to-left(RTL) boundary motion produces shown in Fig. 11(but encompassing €¢=<1.0) clearly
rightward filamentary transpofttesults not shown| shows that for all offsetg, two structural features engender

Filamentary transport along cell boundaries has also begpoor transport to or from upper boundary cell§1) a CCSL
observed by Moses and Steinbd®6] in traveling waves. alwaysseparates any given upper primary cell from the cen-
As in the present case, they observe filamentary motiotral cell immediately below, and2) the distance between
(“backflow” ) in a direction opposite the wave vector and pairs of neighboring CCSL'Ymeasured normal to either
collective particle motion in the direction of wave propaga-CCSL reaches a minimum at a point between any given
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mative than mapping limited numbers of particles. Typically,
individual particle motion becomes periodic and correspond-
ing Poincaremaps reveal little concerning overall transport
characteristics. The Poincaremap corresponding to Fig.
12(b), shown at the top of Fig. 13, reveals that agglomeration
within central and upper boundary cells corresponds to at-
traction toward period-1 elliptic point§Note that the cen-
tral, left-lying period-1 point indicated in the upper map in
Fig. 13 corresponds to oscillating elliptic points in left cen-
tral cells LC(N) while the right period-1 point corresponds
to oscillating elliptic points in right central cells RNJ.]

The Poincaremap corresponding to Fig. (@, shown at
the bottom of Fig. 13, indicates that asymptotic particle mo-
tion toward, then on, the periphery of central cells corre-
sponds to attraction toward a limit cycle. The limit cycle
encompasses a period-1 point in the right central cell, where
again the fixed point corresponds to oscillating elliptic points
in RC(N). Notice that existence of limit cycles is clearly
indicated in Fig. 12. It is found that particles on the interior
of the limit cycle gradually migrate outward onto the cycle
while nearby outlying particles migrate inward; additionally,
individual particle trajectories on the limit cycle are purely
periodic, having the same period as the slow oscillation. As
in the previous caséwhere y=4), particle agglomeration
occurs in a number of upper boundary cells, while agglom-
eration within central cells is limited to L&). Again, ag-
glomeration corresponds to attraction toward period-1 ellip-
tic points. Although not shown, under certain conditions,
particles are repulsed by central elliptic points; this corre-
sponds to repulsion from unstable period-1 points.

It appears that neither particle accumulation mechanism
(i.e., accumulation at fixed points and on limit cygldgs
been identified in the particle agglomeration literature. We
ote that these mechanisms are purely kinem@tc, par-
ticle velocities are at all times equal to the local fluid veloc-
ity) and thus are most likely realized when fluid viscous

central cell and the upper primary cell located above and tdorces on each particle dominate particle inertial and buoy-

the right(when ¢<0.5) (or when¢>0.5, between a central
cell and the upper primary cell located above and to the. left

C. Asymptotic transport

ancy forces and interparticle collisional momentum transfer.
In closing, we note that, unlike particle transport in other

systems, long-range transport here is not mediated by par-

ticle trapping within translating heteroclinic orb[t5,26,28

and does not require molecular diffusip®2]. To the con-

Under all conditions tested, particles either accumulaty,y |ong-range transport in this system requires bifurcation

(agglomeratg near, or move away from, oscillating elliptic
points in the flow[see Figs. 1) and 12d)]. Indeed,com-
plete agglomeration at elliptic points is observed at high
driving frequencies, as shown in Fig. (b2 (y=4). (Note

of CCSL’s as shown in Fig. 11.

VIl. SUMMARY AND CONCLUSIONS

that all 1024 particles have accumulated at the elliptic points A model, applicable in the low streaming Reynolds num-

shown) When y=3, particles both agglomerate at elliptic
pointsand collect on the periphery of central cellsee Fig.
12(d)]; similar behavior is observed when oscillation ampli-
tudesL, are relatively small, on the order of 0.15 or less
(result not shown

Asymptotic transport can be usefully characterized by ex
amining Poincareections. Here, Poincamaps showing the
positions of all 1024 particles at the end of each slgwa-

sistatig oscillation period are determined by mapping par-

ticle positions above any wall wavelenghhto the region
above the first wavelength, <Ox<1, O<y<H. This is
equivalent to determining Poincareaps on the torud?.
(Mapping positions of all particles proves much more infor-

ber limit, has been developed to describe second-order
streaming in an oscillating wavy-walled channel. In contrast
to earlier studie§3-5], the present model considers flow
driven by moving boundaries and is thus subject to a nonho-
mogeneous second-order boundary velocity condition. Due
1o this condition, the steady second-order flow is driven by a
combination of steady Reynolds stresses within the flow and
boundary forcing. Under most conditions, the boundary-
forced flow component dominates the Reynolds stress com-
ponent; Reynolds-stress-driven flow becomes important only
when the characteristic Stokes layer thickness becomes much
larger than the wall wavelengthB&1).

Under single-boundary forcing, the flow can have a two-
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or four-cell structure(per wall wavelength Two-cell flow  driven flow for y=5 (or, equivalently, fory<£). Structural
exists for all computationally realizable channel heightsdifferences between flows in which Reynolds stresses are
(0.1=H=5.5) andB=10 *, while four-cell flow exists for negligible and non-negligible are also highlighted. Here we
0.1=H=2.3 andB=<10 *. The physical origin of four-cell find that, as8 decreases below 16, Reynolds-stress-driven
flow in the present model differs completely from the well- central(secondarycells emerge and squeeze near-boundary
known mechanisms driving four-cell flow in oscillatory flow (boundary-forcefdprimary cells toward each wall. At larger
past a stationary wavy walB]. Here, four-cell flow arises values of3, Reynolds stresses are negligible, central cells are
due to competition between the boundary-forced anduppressed, and the flow is dominated by boundary-forced,
Reynolds-stress-driven flow components; four-cell flownear-boundary cells.
never occurs when the boundary-forced component is domi- Finally, we investigate particle transport produced by su-
nant. perposed large-scale quasistatic oscillations of one boundary.
Three approximations, valid under low-Reynolds-stresd ong-range transport occurs only when the Reynolds-stress-
conditions, are derived and compared against the full secondkiven flow component is comparable to the boundary-forced
order solution. For all computationally realizable frequencycomponent and, further, requires two bifurcations of cross-
ratios v, all wall offsets¢, and over the rangdd=0.7 and  channel stagnation streamlines. The bifurcations occur when
10°=B=10 2, all three provide reasonable approximationscrests pass through vertical alignment with opposing valleys
to the full asymptotic solutiorfunder both single- and dual- and are characterized by pairs of CCSL's effectively “hop-
boundary forcing ping” two wavelengths along either boundary. Short-time
During single-boundary forcing and under typical low- transport is characterized by collective particle motion in the
Reynolds-stress conditions, flow structure is independent dfirection of quasistatic boundary displacement and filamen-
the fluid layer thickness, the Stokes layer thickness, and th&ry motion in the opposite direction, features consistent with
forcing wave form. The last result is consistent with obser-transport in traveling wavel6]. Asymptotic particle trans-
vations in non-second-order Stokes flgds] and can be port is dominated by three processesi) attraction toward
quantitatively explained by noting that each wave form leadsstable period-1 elliptic points(ii) attraction toward limit
to a solution of the form//=f(x)zjf:l[aﬁFn(H,y)], Since  cycles, and(iii) repulsion from unstable period-1 elliptic
each solution differs only in the form of the Fourier coeffi- points. These features apparently have not been reported in
cientsa,, differences between solutions become negligibleprevious particle transport studies.
when the coefficients are normalized as described above.
Similar arguments, based on the approximations given ACKNOWLEDGMENTS

above, are used to explain the first two results as well. Comments provided by Professor Robert E. Johnson are

In contrast to single—boundaryjdriv_en row., .flow structuregn,itefu”y acknowledged. This work was supported by the
produced by dual-boundary forcing is sensitive to all flow \ational Science Foundation, Grant No. DMI-9712818.
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tween opposing walls, the ratio of frequencies driving both APPENDIX: COEFFICIENTS IN LEADING AND
boundaries, and the Stokes layer thickness. It is found that, HIGHER-ORDER SOLUTIONS

as the frequency ratig increases, the flow becomes increas- o -

ingly determined by the higher-frequency boundary; dual- The coefficientA,, B,,, C,, D,, E,, andF,, appearing
boundary flow assumes the character of single-boundaryin the O(e,,) solution(20) are given as follows:

_ {Vn(Bn_An)(wnEn_’AnEn/én)}
{[(Enlan)(wn_Q)_(wn+Q)][wnﬁn_znﬁnlan]+[(Zn/6n)(wn_q)_an][BnEnlan_ﬁn]} '

Ay (A1)

A(“): Vn(Bn_An)_Agn)[(ﬁn/’én)(wn_q)_ (wn+ q)] (AZ)
i (R /C) (0n— Q) — 200] |

A AN+ B A

A(Zn)z _ — , (A3)
Ch

A= — (AP +AD+AD), (A4)

An=exp(— wyH) —exp(wyH), (A5)

B,,=exp(— w,H)+expw,H), (AB)

C,=expqH)—expw,H), (A7)
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D,=exp(—qH)—expw,H),
En: wWp exp(wnﬁ)—q exqqi:'),

Fo=w,expw,H)+qexp—qH).

Here,q=k/\/B and w,= k% B+ni.

Coefficients appearing in th®(ee,,) solution in Eqg.(26) are given below:
i (n)
cim_ MAAT A
b (K=
i (n)
b (M —a)?
where
logy Aj=3[1+(—1)"1], j=1,2,34,
Kin=vpt w: » Kon=rp+q,
Kan=vp— w: v Kan=vp—q,
Mip=—v,+ w: » Mon=—v,+0q,

*
n:

Mgn=—rr—Q.

Mz, =—vp—w
Prior to listing the coefficienta{”—a{" , we define the following quantities:

Do={2 sintf(qH)+ 2(q|~—|)2eqﬁ[sinr‘(q~H) —coshqH)1},

N(™ = qF12e9"[ costiqH) — sinh ) TP + 69" (qF) 2 sinh(q ) + (1— gF)[gF costigF)

+sinh(qH)1}PY” +[H sinh(qH) 1P —[qH costiqH) +sinh(qH) 1Py,

where

4
4
PyV=—2, (C{"+D{"),
j=1
4
Pg“>=—j§1 [KjnC{" exp(KoH) +M ;oD exp(M;,H)]

4
P = _,Zl [C{" exp(K;,H)+D{" expg M, H)1.

Based on these definitiona{™—a{" andb{"—b{" are given as follows:

N
a(ln):_

Do’

ay"

[2(qFed"—sinh(qF))al™ + eTH(1— gF) PYY + Fiedp{m — p(V]

2H sinh(qH)

a(sn): P(Zn)_ a(ln) ,
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(A8)
(A9)

(A10)

(A11)

(Al12)

(A13)
(A14)
(A15)
(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)
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igk ~y e T
by" = qu a,v,H%e (B~ Ay)[costigH) —sinh(qH) 1D, (A28)

{2 qFie - sint(q 1) by + Flet(ik v BI2n)a, vy(By— An)}

o ¥ ¢ (A29)
2H sinh(gH)

bV = —p{", (A30)

b = 2" — b + ik VBI20)aqvn( By An). (A3
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